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EXPERIMENTAL AND ANALYTICAL INVESTIGATION OF FAST NORMAL SHOCK 

POSITION CONTROLS FOR A MACH 2.5 MIXED-COMPRESSION INLET 

by George H. Neiner,  Michael  J. Crosby, and Gary 1. Cole 

Lewis Research Center 

SUMMARY 

Results of a normal shock position controls program for a supersonic inlet are pre-  
sented. It was  desirable to investigate normal shock position controls where the inlet 
overboard bypass-door system dynamics was not the limiting factor in the performance 
of the normal shock control system. The controls used a 110-hertz bypass-door system 
and 250-hertz pressure measurement system. The inherent inlet dynamics showed a 
resonance a t  55 her tz .  An analytical program was conducted first, followed by experi- 
mental tes ts .  The inlet used for testing was a Mach 2.5 design axisymmetric,  mixed- 
compression inlet having 60 percent internal supersonic area contraction at the design 
Mach number. The tests were conducted in the Lewis 10- by 10-Foot Supersonic Wind 
Tunnel. The inlet using various control systems was subjected to  inlet diffuser exit air- 
flow disturbances over the range of frequencies from 0 to 140 hertz.  The controls inves- 
tigation was conducted with three different inlet terminations. The terminations consis- 
ted of a long pipe with a choked exit plug, a choked orifice plate close to the diffuser exit 
station, and a 585-13 turbojet engine. The best control was a two-loop control with elec- 
tronic compensation. With this control, the disturbance induced shock motion was re- 
duced relative to  i t s  open-loop value over a frequency range from 0 to  40 hertz.  At 
1 hertz the disturbance-induced shock motion was reduced by a factor of more than 1 O : l  
relative to i ts  open-loop value. Although the amplitude of shock motion of the controlled 
inlet was reduced over a frequency range from 0 to 40 hertz,  it was amplified above the 
open loop in the region of an inherent inlet resonance at 55 hertz.  

1 NT RO D U CT ION 

The basic function of the supersonic inlet i s  to  change the kinetic energy of the air 
entering the inlet into a static pressure rise by slowing down the air velocity. In doing 



t h i s  the inlet should maintain high total pressure recovery and low distortion of the pres-  
sure  profile at  the diffuser exit. In general, total pressure recovery increases and dis- 
tortion decreases at  the diffuser exit of a mixed-compression inlet as the normal shock 
is moved closer tothe throat. Thus a shock operating point near the inlet throat is de- 
sirable.  But airflow disturbances from within or external to the inlet can cause the shock 
to move from its operating point. A displacement in the upstream direction could result  
in an inlet unstart. A downstream displacement might result  in the loss of engine per-  
formance because of lower pressure recovery or a compressor stall due to increased 
distortion. Any of these events a r e  undesirable and can usually be avoided or  a t  least 
minimized by supplying the inlet with a normal shock control system. 

A common 712.~ of regulating the inlet normal shock against downstream disturbances 
is to manipulate overboard bypass doors near the diffuser exit to match inlet airflow to 
engine airflow requirements. Other experimental work in the a rea  of inlet open-loop dy- 
namics and the selection of signals for control of normal shock position a r e  discussed in 
references 1 to 3 .  Additional experimental investigations for normal shock position con- 
trol are discussed in references 3 to 7. In the past  relatively slow bypass doors (10-Hz 
bandwidth) have been used. It is possible, however, that high-frequency disturbances 
may exist (such as might be generated by a turbofan) that could not be controlled by such 
slow bypass doors.  It was the intent of this investigation, therefore, to design and test  a 
normal shock position control system whose dynamic performance was not limited by the 
dynamics of the inlet bypass system. The frequency response of normal shock position 
to a downstream airflow disturbance for the inlet used in this investigation exhibited a 
pronounced resonance at 55 hertz.  The inlet bypass-door position control system had a 
corner frequency of 110 hertz.  Internal inlet pressure signals downstream of the normal 
shock were used to indicate shock position and were fed back to manipulate bypass-door 
position. 

This report  includes a discussion of the analytical program that was carr ied out ini- 
tially to determine what control types should be investigated experimentally. Both ana- 
lytical and experimental data are presented and discussed for the most promising control 
systems that were investigated. The experimental program was conducted in the 10- by 
10-Foot Supersonic Wind Tunnel at the Lewis Research Center. Tes ts  were conducted 
with three different inlet terminations. One was a long pipe with a choked plug exit; this 
configuration introduced a large volume between the diffuser exit and the choked plug 
exit. A second termination consisted of a choked orifice plate near the diffuser exit. 
The third termination was a turbojet engine. The various normal shock controllers were 
tested by subjecting the controlled inlet to sinusoidal downstream airflow disturbances 
over a frequency range from 0 to 140 hertz.  
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APPARATUS 

Inlet 

Inlet physical description. - The inlet selected for this investigation was an axisym- 
nietric mixed-compression type with a translating centerbody. Sixty percent of the total 
supersonic a rea  contraction occurred internally at  the design Mach number of 2.5. The 
cowl lip diameter of the inlet was 47.3 centimeters. The inlet had a capture a rea  of 1760 
square centimeters, and a design capture corrected airflow of 16.2 kilograms per  sec-  
ond. 

Figure 1 is an isometric drawing of the inlet. The translating centerbody is hydrau- 
lically actuated and electronically controlled. The aft portion of the diffuser is divided 
by three s t ruts  which extend aft to the compressor face station. In each of the three 
compartments a r e  located two overboard bypass doors. The six bypass doors were de- 
signed to pass 88 percent of the design inlet capture airflow. Each door is hydraulically 
actuated and electronically controlled. 

the cowl and centerbody surfaces.  For this investigation bleed configuration I (see 
re f .  8) was used during engine tes t s  and configuration I1 during tes ts  with the long pipe 
and choked orifice plate terminations. The cowl bleed exits a r e  shown in figure 1. The 
centerbody bleed flow was ducted through two of the three centerbody s t ruts  to the free  
s t ream.  Vortex generators were used on the centerbody of the inlet during the long pipe 
and choked orifice plate tests.  During tests with the engine, vortex generators were also 
used on the cowl to help reduce distortion at the diffuser exit. The overboard bypass and 
engine cooling flows a r e  a lso shown in the figure. The engine cooling bypass flow was 
used to cool the engine when the inlet was terminated with the engine. At  design condi- 
tions it passed 3 percent of the inlet airflow. 

upstream and downstream sinusoidal airflow disturbances a r e  described in reference 8. 
Aerodynamic design and steady-state performance of the inlet a r e  described in referen- 
ces  9 and 10. 

Inlet terminations. - Three inlet terminations were used for this investigation; 

Boundary-layer bleed holes a r e  located in the vicinity of the geometric throat on both 

The dynamic responses of the inlet's normal shock and various internal pressures  to  

they a r e  shown schematically in figure 2. The terminations were installed in a 63.5- 
centimeter cylindrical nacelle. The first termination was a long pipe, choked at the 
model exit plug and shown in figure 2(a). The length of this long pipe was 236 centi- 
meters ,  while its diameter was 38.0 centimeters. The exit plug a rea  was  remotely ad- 
justable. The second termination consisted of the choked orifice plate also shown in fig- 
ure 2(a). It was positioned 1.46.5 centimeters downstream of the cowl lip. The flow a rea  
of the choked orifice plate was 653 square centimeters. When the choked orifice plate 
was installed, the model exit plug was retracted in the downstream direction to cause a 
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choked flow condition at  the plate. The third termination was the 585-13 turbojet engine 
as shown in figure 2(b). Figure 3 is a photograph of the model installed in the IO- by 
10-Foot Sunersonic Wind Tunnel. 

Inlet transfer function. - Analytical open-loop inlet dynamics were used in deter-  
mining the controllers before the controls investigation. The experimental inlet dynamic 
data, which were taken during the analytical controls design activity, were not available f o r  
designing the controllers. These experimental data are presented in reference 8. They 
are  used in par t  herein as reference information to show the effectiveness of the control 
system and also to show a comparison with the analytical responses.  

A signal flow block diagram of the inlet is shown in figure 4. The inlet dynamic sig- 
nals of interest  for this investigation are shock position X ,  throat exit static pressure  
P56, and diffuser exit static pressure  Pg2. These symbols as wel l  as the rest of the 
symbols appearing in the report  are defined in appendix A.  The transfer functions which 
relate these signals to a downstream airflow disturbance Wbd are  indicated in figure 4. 
The transfer functions consist of two types of factors: the steady-state gain, which is 
represented by Kg2, K56, and Kx; and the dynamic te rm (the frequency dependent part) ,  
which is represented by Gg2, G56, and Gx. The open-loop dynamic te rms  have been 
normalized so  that their  low-frequency magnitude is equal to one. 

Inlet steady-state gains: Table I lists the values of steady-state gain for X,  PS6, 
and Pg2 related to  a downstream airflow disturbance wbd for all three inlet termina- 
tions. Ideally, if the same operating point and disturbance s ize  were used for  all three 
inlet terminations all three gains would be the same. However, because the system is 
nonlinear and the same operating points and disturbance magnitudes were not used for 
testing with each inlet termination, a particular gain had different values depending on 
which inlet termination was used. 

TABLE I .  - STEADY-STATE GAIN OF INLET SIGNALS 

FOR THE DIFFERENT INLET TERMINATIONS 

Ratio 
of 

variables 

AX/AWbd r- 
56/AWbd 

Steady - 
state 
gains 

Kg 2K56Kx 

Kg 2K 56 

Kg 2 

Inlet terminations 

plate 

Units 

cm 
kg/sec 

N/cm2 
kg/sec 

2 N/cm 
kg/sec 

4 
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The experimental frequency responses of the dynamic te rms  of the inlet transfer 
functions (X, P56, and Pg2 to wbd), a s  illustrative of the nature of the dynamics of the 
process to be controlled, will be presented next in the form of normalized Bode plots. 

fe r  function relating shock position to the downstream airflow disturbance i s  
Shock position dynamics: In te rms  of the block diagram shown in figure 4, the trans- 

X 

wbd 

X - = K  G K G K G  92 92 56 56 x x 
wbd 

= G92G56Gx 
N 

The open-loop normalized response of shock position to a downstream airflow disturbance 
Wbd is shown in figure 5. The curves represent shock position resx>onse to a downstream 
airflow disturbance with the inlet terminated with the long pipe, with the choked orifice 
plate, and 585-13 engine, respectively. The curves of figure 5 also represent the nor- 
malized open-loop frequency response, namely, 

The phase shift of the three curves of figure 5 for the downstream disturbance a re  
quite s imilar .  A dead time dominates the phase characterist ics.  The 180' phase shift 
occurs at approximately 60 hertz for a l l  three terminations. 

The amplitude rat io  curves for the three terminations a r e  markedly different. The 
long pipe with its large downstream volume, exhibits a low-frequency first-order corner.  
However, in the vicinity of the frequency at which 180' phase shift occurs, the long pipe 
resonates such that its amplitude ratio is near that of both the choked orifice ylate and 
engine configurations. 
three terminations present the problem of a large amplitude ratio a t  the frequency a t  
which 180' phase lag occurs. 

transfer function relating P56 to the downstream airflow disturbance is 

Thus, from a stability point of view for a closed-loop system, all 

Throat exit static pressure dynamics: In te rms  of the block diagram of figure 4,  the 

- = K  56 G K G 

wbd 
92 92 56 56 

The normalized open-loop response of throat exit static pressure P56 to the downstream 
airflow disturbance wbd is 
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p56 
wbd 

The curves of figure 6 represent P56/WbdIN with the inlet terminated with the 
long pipe, the choked orifice plate, and the 585-13 engine. The P56 responses a r e  quite 
s imilar  to the shock Fosition responses except that they exhibit somewhat less  Jhase lag. 

figure 4 the transfer function relating Pg2 to  the downstream airflow disturbance is 
Diffuser exit static pressure dynamics: In t e rms  of the block diagram notation in 

= G92G56 
N 

'92 - = K  G 
wbd 

92 92 

The curves of figure 7 a r e  the normalized open-loop response of Pg2 to  the downstream 
airflow disturbance for the long pipe, choked orifice plate, and engine terminations. The 
normalized open-loop response is 

I A most important characteristic of the diffuser exit p ressure  response is the rela-  
tively small  phase lag in the vicinity of the resonance. Since this pressure  is near the 
source of the downstream airflow disturbance, it is not characterized by the duct dead 
t ime. Thus, this signal can serve as an anticipatory function for the control of shock po- 
sition against downstream airflow disturbances. 

~ 

Dynamic Pressure Transducers 

Figures 8 and 9 indicate the location of static pressure taps connected to the dy- 
namic strain-gage pressure  transducers used in this investigation. The throat exit static 
pressure P56 and diffuser exit static pressure Pg2 were used as feedback control sig- 
nals. The pressure signals a r e  identified by their model station numbers. These num- 
bers are the distances in centimeters aft of the cowl lip. Figure 9 shows an enlarged 
view of the throat region and the location of the throat static pressure  taps. Looking 
downstream, all the static pressure  taps were essentially in line, 30' counterclockwise 
from top center of the inlet. The transducers were close-coupled within 3 to 4 centi- 

I 
meters of the taps to insure adequate dynamic response. 

I 
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The transfer functions h56 and h g 2  of figure 4 represent the dynamics of the trans- 
ducers and the tubes connecting the taps and transducers for P56 and Pg2, respec- 
tively. The normalized frequency response curves representing h56 and hg2 a r e  
shown in figure 10. The P56 and Pg2 frequency response data were corrected to ac-  
count for the dynamics in measuring the pressures .  The amplified output of the t rans-  
ducers had a gain of 1 . 4 5  V/(N/cm ) . 2 

Overboard Bypass-Door System 

During the tes t  program three symmetrically located inlet overboard b y n s s  doors 
were used to generate downstream airflow disturbances, and the remaining three doors 
were used for control. 

A bypass-door assembly is shown in  figure 11. Each door consisted of a hydrau- 
lically actuated sliding plate, with four slots,  which were controlled by a position servo- 
mechanism. Figure 12 is a schematic of the bypass-door installation. The servoam- 
plifier was designed at Lewis for high-response electrohydraulic servosystems. Details 
of the servoamplifier are presented in reference 11. A detailed discussion of the 
bypass-door servosystem design is presented in reference 12. 

Bypass-door steady-state gain. - The normal shock control systems used the over- 
board bypass-door area as the manipulated variable. Since the bypass-door exits were 
choked, the controller essentially manipulated the overboard bypass airflow. In the no- 
tation of figure 4, the transfer function representing the relation between the control- 
door bypass airflow and the command voltage to the bypass control-door servos is KbGb. 

The value of the gain coefficient Kb is 

kg/sec 
v 

Kb = 0.69 long pipe 

Kb = 0.84 kg/sec choked orifice plate 
v 

Kb = 1 . 0 4  kg’sec engine 
V 

These gains are for three of the bypass doors driven from a common command voltage. 
If wind-tunnel conditions and the inlet configuration had been the same for all tes ts ,  

the value of Kb would have been the same regardless of the termination. However, for  
these tes ts  Kb did have a different value for  each inlet termination. Some changes 
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made during the program that caused changes in the value of Kb were (1) a change in 
bypass-door travel to feedback voltage gain after the long pipe tes ts  to give a more con- 
venient calibration during the choked orifice plate and engine tests; (2) the change in bleed 
configurations from I1 during the long pipe and choked orifice plate tests to I during the 
engine tests;  and (3) the change in Kb with bypass-door operating point coupled with 
slightly varying operating points and magnitude of the airflow disturbance for the three 
different terminations . 

I 

Bypass-door dynamics. - The normalized frequency response of bypass-door position 
to command voltage is displayed in figure 13 and represents Gb. The figure indicates 
that the bypass-door response was flat within 0 to -3 decibels over the frequency range 
from 0 to  110 hertz.  The 180' phase shift occurred a t  120 hertz.  Thus, since the domi- 
nant inlet resonance is a t  55 hertz,  the bypass doors would not be the limiting factor in 
trying to reduce the inlet resonance at 55 hertz. 

TEST PROCEDURE 

Test S et u p 

Figure 14 is a schematic representation of the inlet controls experiment as installed 
in the 10- by 10-Foot Supersonic Wind Tunnel. A small ,  10-volt general purpose analog 
computer located in the control room was used to  mechanize the controllers. The normal 
shock controls used P56 and/or Pg2 as feedback signals to  manipulate the inlet bypass 
doors to  control the normal shock. Three symmetrically spaced bypass doors were used 
for control; the other three bypass doors were used to generate a downstream airflow 
disturbance. Sinusoidal bypass-door airflow disturbances were generated over a fre- 
quency range from 0 to  140 hertz.  

Operating Point Corditioi-is 

Typical inlet operating point conditions and disturbance magnitudes are given in 
table 11. 

The values of the gain coefficients presented in the previous sections were obtained 
by the technique of taking steady-state readings at  the operating point and at  the two ex- 
t reme points of the sinusoidal disturbance before starting a frequency-response test .  
Thus, they represent  the steady-state change in signal per  change in disturbance. These 
gains were established at the normal operating point with the shock located near the cen- 
te r  of the eight throat static-pressure taps (fig. 9 ) .  The zero-to-peak amplitude of shock 
excursion from the operating point was  approximately 2.7 centimeters for the long pipe 
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TABLE 11. - TYPICAL OPERATING POINT CONDITIONS 

[Model angle of attack, zero. ] 

Free-  
s t ream 
Mach 

number, 

MO 

2 .5  

2.5 

2.5 

2. 46b 

Reynolds 
number, 

Rea 

j .  88x1O6 

1 .  88X106 

!. 88x1O6 

1. 3x1O6 

ia t io  of 
specific 
heats ,  

x 

1.40  

1 .40  

1 .40  

1.39 

Model 
configuration 

Long pipe 

:hoked orifice plat€ 

3ngine 

Long pipe 

Free-  
s t ream 

total 
p ressure ,  

HO 
2 N,cm 

8.93 

9 .01  

10 .0  

10 .3  

Free-  
s t ream 

tempera- 
tu re ,  

TO 
K 

318 

3 1.6 

343 

390 

?ressur€  
rat io ,  

He' Ho 

0 .92  

.92  

. 9 2  

. 9 3  

Change in 
airflow 

(zero to peak) 

AW 5 

kg sec 

0 .22  

.20  

. 3 5  

.24  

"Based on the cowl lio diameter .  
bConditions for running best control hot with long pipe configuration; resul ts  a r e  shown in fig.  2 4 .  

~~ ~~ 

Change in 
normal 

shock dis-  
p la c em e nt 

(zero to peak) 
A x .  
c 111 

2.7 

3 . 2  

3 . 6  

3 . 4  

termination, 3 . 2  centimeters for the choked orifice plate termination, and 3.6 centi- 
meters  for the engine termination. 

Figure 15 indicates the gain characterist ics of the shock position, P56, and Pg2 as 
functions of the bypass door mass-flow ratio. The data were taken with the inlet termi-  
nated with the long pipe and a fixed choked plug position. The nominal operating point 
and excursion amplitude are noted in the figure. 

When the normal shock is located near the throat (low values of bypass mass  flow 
ratig) , the shock is strongly influenced by the performance bleed (mass-flow ratios of 
about 0.01 to 0.03) The effect is to minimize shock motion and pressure  variation in 
disturbed flow. In the normal operating range the bleed has small effect and the throat 
area against axial position is nearly constant (mass-flow ratios of about 0.04 to 0.08).  
Thus the shock position is more sensitive to  flow variation than the pressures  are.  At 
the higher values of bypass mass-flow rat io  (above about 0.12) the normal shock enters  
the diffuser, which has a high rate of change of area against axial position. This tends 
to  reduce the shock-position sensitivity to  flow variations. The pressures  exhibited a 
higher sensitivity in this region since the normal shock is close to the pressure  taps.  

Steady-State arid Dynamic Data 

Both steady-state and dynamic data were taken. Steady-state data were taken by 
hand in the control room and also recorded in digital form on magnetic tape through the 
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use of the central automatic digital data encoder system (CADDE) for use at  a later date. 
The dynamic tes ts  consisted of frequency response tes ts .  For the dynamic tes ts  

both magnitude and phase data for a few key signals were determined on line using a 
commercial frequency response analyzer in the control room. These dynamic signals a s  
well a s  others were recorded in analog form on magnetic tape for reduction at  a later 
t ime. Before the dynamic tes ts ,  steady-state data were taken a t  the operating point and 
a t  each extreme point. These data gave the steady-state variations of the test signals. 
After correcting the dynamic data to account for dynamics of the disturbance device and 
the pressure transducers, the data were plotted in the form of Bode plots; these show 
magnitude and phase angle as a function of frequency. The open-loop and closed-loop 
magnitude data were normalized to the steady-state open-loop value. 

ANALYSIS AND DESIGN MODEL 

Figure 16 shows the inlet block diagram for disturbances originating downstream. 
At the top of the figure is a representation of the inlet showing the normal shock, the 
control signals, and the bypass doors. Also shown are the closed feedback loops from 
the inlet static pressures  P56 and Pg2 which produce the.command voltage Vb to the 
control bypass-door servos.  The symbol P 56, 
the throat exit static pressure P56 by which the operator can se t  the position of the nor- 
mal shock. The throat exit static pressure feedback controller transfer function is 

. The diffuser exit static pressure feedback controller transfer function is Kc 56Gc 56 
Kcg2Gcg2. When the inner Pg2 loop was used with the outer P56 loop, the Pg2 feed- 
back signal was ?assed through a first-order high-pass filter before going to the P g 2  
controller. The filter eliminates low-frequency signals in this loop, thereby preventing 
low-frequency interaction with the setting of the steady-state P 56 pressure  level and 
thus normal shock position. The filter transfer function is 

represents the command value for 

1.67s 
S 1 f -  

0.6 

The block diagram indicates the problem considered in this analysis, namely, to 
select control modes that will maintain desired P56 pressure levels and thus desired 
shock position a t  its command value while the inlet is subjected to a downstream airflow 
disturbance wbd' 

systems were evaluated analytically using the root locus technique. Closed-loop system 
Before the experimental investigation of the normal shock control, various control 
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performance was then verified with an analog computer simulation of the system. 

both the bypass-door servos and the inlet dynamics. 
To use the root locus technique, a transfer function representation was  needed for 

Bypass-Door Servo Dynamic Model 

To obtain the bypass-door transfer function, a mathematical model of the bypass- 
door servos was derived. This model was then modified to fit the experimental fre- 
quency response of bypass-dom Tosition to command voltage lid was then sim;lified. 
The following transfer function was used to  represent the bypass-door servos: 

K G  - - _ _  ,--. 

1 b b -  
S + 2(0.2) -i s2 + 2(0.9) S S2 

1400 2 1500 

where S is the Laplace operator. 

bypass-door airflow Wbc to  command voltage vb' 
With the appropriate value of Kb, this transfer function represents  the control 

Inlet Dynamic Model 

When the control system analysis was begun, experimental steady -state character - 
istics for the inlet had been established ( r e f .  9). The experimental dynamic data, as 
mentioned, were not then available, however. Based on the preceding steady-state inlet 
data,  pressure signals with sufficient gain were chosen for feedback signals for the nor- 
mal shock controllers.  

Transfer  functions for the inlet dynamics were obtained from an analog computer 
Simulation. This simulation was based on linearized normal shock equations and one- 
dimensional wave equations for the subsonic duct. A description of this model and i ts  
simulation is found in reference 13 .  

The frequency responses of the selected control signals were determined from the 
analog simulation and then were curve fit to  obtain the inlet transfer functions. The re- 
sponses were obtained for downstream airflow disturbances. The simulated inlet was  
terminated with the long pipe and then with a choked orifice plate near the engine-face 
station. Since the long pipe produced more pronounced high-frequency resonances. the 
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controls analysis was  concentrated on this case.  It was considered to be the iiiost diffi- 
cult control problem. 

s t ream airflow disturbance Wbd. The short-dashed curve indicates resul ts  from the 
analog computer simulation, and the solid curve indicates the response of the simplified 
transfer function which was used to approximate the analog computer data. The transfer 
function approximation matches the analog computer data to  120 hertz.  The long-dash 
line is the experimental open-loop response (ref. 8). It is included here  for comparison 
purposes with the analytical models. The responses show that the reasonances occur a t  
about the same frequencies. However, the experimental data show more attentuation 
and phase lag than the analytical model. 

A similar  process was applied to the other control signals, and i t  resulted in the 
transfer functions shown in table 111. A s  indicated by the form of &e t ra rs fe r  function 
KxGx, the relation between X and PS6 i s  just a f i rs t -order  lag with a corner at about 
165 hertz.  Since this is a fairly simple relation and since P56 is more directly mea- 
surable than X ,  P was used as the primary controller feedback signal instead of X. 
The throat exit static pressure PS6 gives a fairly good indication of shock position X .  
It was also used as the signal to evaluate the perfopmance of shock position control for 

Figure 17 shows normalized frequency response of shock position X to a down- 

56 

X - 
'56 

TABLE 111. - FACTORED TRANSFER FUNCTIONS FOR INLET DYNAMICS 

KX 

- + 1  
1010 

variables 
Factored transfer function 

X 

Wbd 
- 

0 34s ( ~ ' $ ( ~ + % + ~ ( $  +-+1-+-+1 '483; )(7::2 750 ) 

pg2 
wbd 

Block diagram 
symbols 

Kg ZG9 2 

K56G56 

1 2  



downstream airflow disturbances. It i s  recognized that, under flight conditions, PS6 by 
itself would not suffice as a feedback variable. Corrections or  biases might be required 
for changes in variables such as altitude, flight Mach number, and aircraft  attitude. 
Also, for upstream disturbances that could cause choking of the inlet throat and thus an 
unstart ,  some sor t  of centerbody control would be required. These effects were not 
evaluated during this program. 

in appendix B. Appendix C presents the analytical and experimental data for controls 
tested other than the best control. 

The root locus analysis and design details for the various controllers are developed 

Types of Control Investigated 

Both single-loop and two-loop control systems were investigated analytically and ex- 

TABLE IV. - SUMMARY OF TYPES OF CONTROLLERS 

INVESTIGATED 

Type of 
control 

General  form of controller 

P56 controller 

K 

S 

s(:+ 1) 

P g 2  controllei 

0 

0 

0 

K' 

K' 

K' 

Pg2 high- 
p a s s  f i l tera  

Nb 

N 

N 

o u t  

In 

In 

'High-pass filter t ransfer  function: 1.67S/(S/0.6 + 1). 
'Not applicable. 
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perimentally. Six forms of controls were investigated. Table IV l ists the general form 
of controls used and designates them types 1 to 6. For  example, type 2 control is a 
single-loop proportional-plus-integral controller having P 56 as its feedback signal. 
Type 5 control is a two-loop control using a proportional-plus-integral outer-loop con- 
troller that has P56 as its feedback signal and a proportional inner-loop controller that 
has Pg2 as its  feedback signal. For  the most par t ,  just the control number will be used 
to describe the form of the controller being discussed. Many different pole-zero loca- 
tions were investigated analytically for each of the type 2 ,  3,  5, and 6 controls. Only the 
controller giving the best  response for each type of control is discussed in this report .  

state e r r o r  in the face of step disturbances. Also, at low frequencies they gave good at- 
tenuation of the disturbance induced shock motion. The Pg2 inner loop with i ts  asso-  
ciated high-pass filter was added in order  to  reduce the effects of the dead time between 
Wbd and P56. The effectively decreased dead time resul ts  in less phase lag, which in 
turn makes the closed-loop system more stable. Thus, the Pg2 signal se rves  as an  
anticipatory signal for  downstream airflow disturbances. 

Controllers with integral action were investigated because they gave zero steady- 

Control Evaluation 

The control was used as a regulator to maintain a desired P56 (and thus shock posi- 
tion) while the inlet was perturbed by a downstream airflow disturbance. The throat exit 
static pressure P56 was used as the signal for evaluating performance. As represented 
by Bode plots, the ideal control would have an amplitude ratio of zero for all disturbance 
frequencies. Since this is not possible, the smaller  the amplitude ratio the controlled 
system has,  the better its performance. An additional requirement placed on the closed- 
loop response was that the closed-loop frequency response would not resonate above 1 . 3  
t imes the open-loop steady-state value. With this amount of resonance, the normal shock 
sti l l  remained downstream of the geometric throat for all tes ts .  

Controller Giving Best Response 

Of the controllers investigated analytically, the one giving L e  best response wds of 
the type 6 form (see table IV) two-loop compensated-integral system. This configuration 
turned out to be the best for the following reasons.  The outer loop gave greater  attenua- 
tion in shock motion (as  indicated by P56) over the frequency range from 0 to 7 hertz 
than did any of the other types of controls. This was accomplished while keeping the nor- 
malized closed-loop amplitude rat io  resonance at  5 5  hertz below 1 .3 .  The addition of the 



filtered Pg2 inner loop resulted in the greatest  attenuation of shock motion over the 
midfrequency range of 5 to 40 her tz .  

RESULTS AND DISCUSSION 

Summary  of Analyt ical and Experimental Contro ls  Investigated 

Table V is a summary of various controllers used for both the analytical and experi- 
mental normal shock position controls investigation. It indicates the controllers used 
with the various inlet terminations and also the figures in which the data are presented. 
Only the control giving the best  frequency response will be discussed in this section. 
The other controls that were used in the analytical and experimental investigations are 
discussed in appendixes B and C.  The loop gain KL will be explained in the next sec-  
tion. 

Since the controls analysis was done only with the long pipe inlet termination, there 
will be no comparison of analytical and experimental data for the other inlet terminations. 
It might a lso be mentioned at this point that the closed-loop frequency response phase 
plots will not be included with most of the closed-loop data that are presented here and in 
the appendixes. However, for completeness the phase plots will be included with the data 
for  the best control for each of the inlet terminations and with the data for unusual oper- 
ating conditions. 

Discussion of Best Contro l  

Figure 18 compares the normalized closed-loop experimental and analytical 
AP56/AWbd I CN responses for the best control which is of the type 6 form for the inlet 
with the long pipe termination. The analytical curve was taken from figure 30 in appen- 
dix B. Both responses were taken a t  the same loop gain KL. A s  indicated by equation 
( ~ 1 0 ) .  a t  low frequencies, P56/wbdIcN is equal to w / K ~ .  The value of K~ can be 
determined then by projecting the low-frequency par t  of the P56/Wbd I C N  curve (a 
straight line with a slope of +1) up until it c rosses  the magnitude ratio value of one. At 
this point w = K Using this technique the loop gain KL is 85 for the control used to 
get the responses shown in figure 18. The two responses compare fairly well except for 
the magnitude of the resonance a t  60 her tz .  The comparisons bet.;Jeen the analytical and 
experimental responses for  the type 1, 2 ,  and 3 (see table IV) controls investigated a r e  
shown in  figures 3 2 ,  35. and 37 in appendix C .  They show a better agreement between 
the analytical and experimental responses than the two-loop best control did in figure 18 

L ’  
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KL Gcg2 Variable Inlet Gc 56 
plotted termination 

0 . 9 6  

79. 

91. 

85. 

0 . 6 7  

36. 

79. 

163. 

104. 

0 . 3 2  

0 .92  

1 . 6  

60.  

60. 

85.  

85. 

Used in figures 

TABLE V. - SUMMARY OFANALYTICAL AND EXPERIMENTAL DATA 

v f 

Analytical data 

Open loop 

Open loop 

Proportional 

(S/250 + 1)/S 

(S/285)2 + (S/285) + 1 
S(S/500 + 1) 

(S/325)2 + (0.48/325)  + 1 
S(S/316 + 1) 

Open loop 

Open loop 

Open loop 

Proportional 

(S/250 + 1)/S 

(S/250 + 1)/S 

(S/250 + 1)/S 

(S/285)2 + (S/285) + 1 
S(S/500 + 1) 

0 

0 

0 

(S/250 + 1)/S 

(S/250 + 1)/S 
n 

(S/318)" + (0.48/318) + 1 
S(S/316 + 1) 

@/318)2  + (0.4s/318)  + 1 
S(S/316 + 1) 

Experimental data 

-- 
-- 
-- 

0 

0 

0 

0 

0 

P r opor tional 

Proportional 

Proportional 

0 . 5  

1 . 0  

0 

2.47 

Long pipe 1 7  

3 0 , 3 1  

30 ,32  

30 ,35  

31 ,37  

1 8 , 3 1  

5,17 

6 ,19 ,33 ,34 ,38  

7 

32 ,33  

36 

34 ,35 ,36 ,39  

36 

3 7 , 3 8  

26 

26 

26 

39 

39 

27 

18 ,19 ,22 ,25 ,27  
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TABLE V.  - Concluded. SUMMARY OF ANALYTICAL AND EXPERIMENTAL DATA 

r 

KL 

63.  

79. 

151.  

79. 

57. 

75. 

113.  

88. 

88. 

50. 

35. 

59. 

- 

Gc 56 

Open loop 

Open loop 

Open loop 

(S1’628 + 1)/S 
(S1’628 + 1)/S 

(S/318)2 + (0.48/318) + 1 
S(S,/316 + 1) 

(S/318)2 + (0.48/318) + 1 
S(S/316 + 1) 

(S/318)2 + (0.48/318) + 1 
S(S/316 + 1) 

(S/318)2 + (0.48/318) + 1 
S(S/316 + 1) 

(S/318)2 + (0.48/318) + 1 
S(S/316 + 1) 

Open loop 

Open loop 

Open loop 

(S/628 + 1)/S 

(S/628 + 1)/S 

(S/318)2 + (0.48/318) + 1 
S(S/316 + 1) 

(S/318)2 + (0.48/318) + 1 

S(S/316 + 1) 
(S/318)2 + (0.48/318) + 1 

S(S/316 + 1) 

Gc9 2 

--  
-- 
-- 

0 
1.0 

1 . 1 0  

2 .47  

2 . 7 5  

2.75 

2 . 7 5  

Variable 
plotted 

Inlet 
termination 

Choked orifice 

Engine 

Used in figures 

5 

6 , 2 0 , 4 1  

7 

40 

4 0 , 4 1  

42  

20 ,22 ,42  

23 

23 

23 

5 

6 , 2 1 , 4 4  

7 

43 

43,44 

45 

45 

21,22,45 

Figure 19 shows a comparison of the normalized response of AP56/AWbd for the 
experimental open-loop and closed-loop best  control for the inlet terminated with the long 
pipe. The disturbance induced shock motion, as indicated by PS6, is  reduced below that 
of the open-loop system over the frequency range from 0 to 50 hertz.  At 1 hertz the P56 
curve and. hence, shock motion are  reduced to 7 percent of i ts  open-loop value. Because 
of the integral control, there i s  zero steady-state e r r o r  for step changes in downstream 
airflow disturbances. A s  shown in figure 19(b) the closed-loop phase angle s ta r t s  from a 
90’ lead at  low frequencies. This is the result  of the P 56 controller integral action 
being in the feedback path (the regulator problem). An integrator in the feedback path 

, 
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looks like a differentiator in the closed loop and hence the closed-loop system s ta r t s  at a 
90' lead 'for low frequencies. 

Figure 20 shows the response of P56 for the inlet terminated with the choked orifice 
plate using the control which produced the best results for the inlet terminated with the 
long pipe. It i s  noted in figure 20(a) that the closed-loop response of P56 i s  reduced be- 
low that of the open-loop response over the range in frequency from 0 to 40 her tz .  At 
1 hertz the amplitude of this signal has been reduced to  8 percent of i ts  open-loop value. 

nated by the engine using the best control. 
below that of the open-loop over the frequency range from 0 to 50 hertz. At 1 hertz  the 
disturbance induced shock motion i s  reduced to 11 percent of i ts  open-loop value. 

figure 22.  The curves show the controlled inlet's response with the long pipe, the choked 
orifice plate, and the engine terminations. It should be noted that the loop gain KL was 
somewhat different in the three cases .  F rom the similarity of these curves,  it can be 
concluded that, under closed-loop control, the type of inlet termination has little effect on 
shock position response to a downstream airflow disturbance. This is desirable since the 
pneumatic impedance of a jet engine might change as  i t s  operating point changes. 

operating point and amplitude of shock motion is varied. Disregarding the differences 
in zero-to-peak amplitude between the curves,  it is seen that the operating point for the 
solid curve is 2.5 centimeters forward of the normal operating point. I ts  higher valued 
low-frequency amplitude response implies that i ts  loop gain is lower than that of the 
short-dash curve.  The long-dash curve on the other hand has an operating point that is 
1 . 2  centimeters downstream of the normal operating point. I ts  low-frequency amplitude 
response has lower values, implying that i ts  loop gain is higher than that of the dashed 
curve.  There are two factors that account for the differences in loop gain for the three 
responses.  The f i rs t  and most significant factor is the result  of operating in the non- 
linear region of control bypass-door area to position curve as shown in figure 24. Mov- 
ing the shock position to  the forward operating point resul ts  in a lower control bypass- 
door area to position gain resulting in a lower Kb value thus decreasing the loop gain. 
Moving the shock position to the aft operating point resul ts  in a higher control bypass- 
door a rea  to position gain resulting in a higher Kb value thus increasing the loop gain. 
The second and not quite as  significant factor for the loop gain difference shown in fig- 
ure  23 can be seen with the aid of figure 15 looking a t  the PS6 against bypass mass-flow 
ratio curve.  It is seen that the steady-state pressure gain AP56/AWbc decreases  or  
increases if the shock position operating point i s  moved forward or aft ,  respectively, of 
the normal operating point. These two factors combined to  increase the loop gain when 
the shock position operating point was moved downst,-elm and decreased when the shock 

Figure 21 shows the open- and closed-loop responses of P56 for the inlet t e rmi-  
The closed-loop amplitude ratio of P56 is 

The normalized P56 amplitude responses of figures 19 to 21 have been replotted in 

Figure 23 shows a comparison of resul ts  obtained with the best control where the 
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position operating point was moved upstream (see fig. 23). It i s  noted that the change in 
loop gain also affects high-frequency closed-loop performance; the magnitude of the 
resonance fo r  the broken curve (highest loop gain) is  significantly higher than those for 
the more forward shock operating points. 

Figure 25 is  a comparison of the normalized amplitude and phase shift for the best 
control run at two different free-stream total temperatures.  The inlet was terminated 
with the long pipe. The free-stream total temperatures were 318 and 390 K. The other 
operating point conditions are shown in table 11. The curves show that there is little var-  
iation in amplitude and phase shift as the free-stream total temperature was increased. 
The same control with the inlet terminated with the choked orifice plate was also run a t  
tunnel f ree-s t ream total temperatures of 318 and 390 K .  In this case (not shown) there 
was less difference between the hot and cold responses than there was when the inlet was 
terminated with the long pipe. 

Pg2 (t!7pe 4 control, which uses  an  unfiltered Pg2 as  feedbi L).  In this case only the 
inner loop of the block diagram of figure 16 is closed. The system was operated with 
three values of loop gain. Although the loop gain was varied by nearly five to  one, the 
magnitude of the resonance a t  about 65 hertz did not vary significantly. The reason for 
this that t h e  Pg2/Wbd t ransfer  function does not have as much dead t ime associated 
with i t  as the P56/iiVbd transfer  function does. The lower dead t ime results in less 
phase lag which in turn makes the closed-loop system more stable. 

shows the normalized magnitude plot of the best control while varying the inner loop 
(Pg2) gain. By feeding back the diffuser exit signal, the disturbance induced shock mo- 
tion (as indicated by P56) can be significantly reduced in the range of about 4 to 30 hertz.  
This is done without significantly exciting the resonance at about 55 hertz. This result  is 
in agreement with the resul ts  of the mathematical analysis. 

Figure 26 shows the experimental response of a proport 'mal loop feeding back only 

i 

The effect of this inner loop Pg2 feedback signal is demonstrated in figure 27 which 

SUMMARY OF RESULTS 

Normal shock position controls were investigated for a Mach 2.5 axisymmetric 
mixed-compression inlet subjected to downstream airflow disturbances. Because of the 
fast bypass-door system, inherent inlet dynamics were the limitation on shock position 
control. Since the inherent inlet resonance was amplified for all the types of controls in- 
vestigated, indications are that the fast bypass doors did not help in the resonance region. 
Comparison of the experimental and analytical resul ts  were good, thus verifying the 
simulation. 

The best control of the inlet was accomplished with a two-loop control system feeding 
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back a throat exit static pressure and a diffuser exit static pressure.  A proportional 
gain was used in the inner diffuser exit static pressure loop, and a compensated integral 
control was used inthe outer throat exit static pressure loop. The diffuser exit static 
pressure signal went through a high-pass filter before going through its proportional con- 
troller.  

The best  control demonstrated the following: 
1. The disturbance induced throat exit static pressure oscillations and hence normal 

shock position motion was reduced relative to its open-loop value over the frequency 
range from 0 to  40 hertz. 

2. At 1 hertz the disturbance induced throat exit static pressure variations (hence 
normal shock position motion) were reduced to approximately 10 percent of the open-loop 
value; at lower frequencies the pressure variations and shock position excursion were 
further reduced in direct  proportion to the frequency. 

3. The use of the loop feeding back diffuser exit static pressure helped to reduce the 
effect of the dead time that existed between the diffuser exit airflow disturbance and the 
throat exit static pressure.  The result  was greater  attenuation of shock position excur- 
sions (as implied by P56 responses) in the frequency range from 10 t o  40 hertz. 

airflow disturbances was essentially independent of the type of termination: long pipe, 
choked orifice plate, or turbojet engine. This is desirable since the pneumatic impe- 
dance of a turbojet engine can vary with its operating point. 

5.  A significant change in  closed-loop inlet response was produced by changing the 
normal shock position operating point. The different responses were the result  of 
changes in the effective loop gain when going f rom one operating point to another. This 
resulted because of two factors. The first factor, of greater  significance, resulted from 
operating the bypass doors in a nonlinear region of the area-to-position curve. A second 
factor resulted from operating the normal shock in  regions of different effective bleed; 
this changed the pressure-to-flow gain. 

6. The closed-loop response of the inlet was also unaffected by a change of 70 K in 
free-stream total temperature. 

4. Under closed-loop control the response of +he inlet P 56 pressure  to downstream 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, March 19, 1971, 
720-03. 
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APPENDIX A 

SYMBOLS 

A 

A , B , .  . . , H  

a , b , c , d  

BPD 

G 

H 

h 

K,  K' 

M 

m 

56 

'92 
Re 

S 

T 

V 

W 

X 

CY 

Y 
A 

P 

w 

w 
I?. 

area 

symbols representing eight throat static pressure taps 

constants, l/sec 

bypass -door position 

frequency dependent portion of transfer function 

total p ressure ,  N/cm 

general feedback path transfer function 

gain factors 

Mach number 

mass  flow, kg/sec 
2 throat exit static pressure located at model station 56.1, N/cm 

diffuser exit static pressure located at model station 92.2,  N/cm 

Reyholds number based on cowl-lip diameter 

Laplace operator, l / sec  

temperature, K 

voltage, V 

airf low,  kg/sec 

normal shock displacement, cm 

model angle of attack, deg 

rat io  of specific heats 

indicates incremental change in variable 

damping ratio 

frequency, rad/sec 

undamped natural frequency, rad/sec 

2 

2 
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Subscripts: 

I b 
I C 

I 
c om 

c 56 

c9 2 

d 

i e 

L 

X 

0 

56 

92 

IC 

I CN 

IN 

bypass door 

control 

command 

refers  to controller transfer function that uses P56 as its  feedback signal 

refers to controller transfer function that uses Pg2 as its feedback signal 

disturbance 

engine 

loop 

normal shock position 

free s t ream 

refers to transfer function relating PS6 to PQ2 
refers  to transfer function relating Pg2 to the diffuser exit airflow dis- 

turbance 

denotes closed-loop transfer functions 

denotes closed-loop normalized transfer function 

den0 t es open- loop normalized transfer function 
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APPENDIX B 

ROOT LOCUS ANALYSIS AND DESIGN 

Open-Loop Bypass-Door and In le t  Model Transfer  Funct ions 

The root locus technique was used for the analysis and design of the normal shock 
control systems. This required that the mathematical model be in the form of transfer 
functions. Open-loop experimental frequency responses of the appropriate inlet signals 
did not exist when the control analysis was performed. An analog inlet simulation 
(ref. 13) based on linearized normal shock equations and one-dimensional wave equations 
for the subsonic duct were used. Frequency responses were taken using the simulation. 
These responses were approximated to provide the transfer functions needed for the root 
locus analysis. The responses resulting from the simulated inlet terminated with the 
long pipe were used in the root locus design because this was considered a more difficult 
case than the inlet terminated with the choked orifice plate. 

A block diagram of the inlet for downstream airflow disturbances is presented in fig- 
ure  16. The transfer function KbGb is the transfer function of control bypass door air- 
flow (Wbc) to bypass-door command volts (vb): 

("+ 1010 1) 
G. = 

The transfer function K G uses the transfer function relating diffuser exit static 
pressure (P92) to bypass-door airflow (Wb): 

92 92 

and K56G56 is the transfer function relating throat exit static pressure (P56) to Pg2: 

(B3) -0.005s G56 = e 
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A fourth order Pade approximation of the dead time was used in the inlet transfer func- 
tion. The approximation is a s  follows: 

s2 2(0.965)S + J r s2  2(0.655)S + J r- - 
1250 1 L12502 1250 J -0.005s N L12502 e 

1250 1250 

The t ransfer  function KxGx relates shock position X to P56: 

1 

-+1 
Gx = 

S 

1010 

The feedback transfer functions were assumed to be 

h56 = hg2 = 1.45 V/(N/cm') 

Figure 28 illustrates the open-loop poles and zeros  of the inlet and bypass-door 
transfer functions located in the S-plane. The poles a r e  designated x and zeros  a r e  
designated 0, as is conventional. The X ' s  and 0 ' s  enclosed in boxes represent the 
bypass-door dynamics Gb. The poles and zeros  of the Pad6 network representing G56 
a r e  shown 0 and X. The 0 ' s  and x ' s  represent the Gg2 dynamics. 

Normal Shock Contro l ler  Design 

A detailed root locus design will be discussed for only one type of controls: the 
type 2 single-loop controller feeding back the throat exit static pressure P56. The con- 
troller is a proportional-plus-integral controller. Root locus design was a l so  done for 
type 1, 3, 4, and 6 controls (see table IV for the general form of the various controls). 
The root locus design for these last four types of controls will not be shown. 

A s  indicated by the form of the transfer function KxGx (shock position X to throat 
exit static pressure  P56), the relation between shock position and P56 for a downstream 
airflow disturbance is just a first-order lag with a corner at about 165 hertz (see ref .  13 
for calculations). Since this is a fairly simple relation and since P 56 is more directly 
measurable than shock position, P56 was used as the pr imary feedback signal instead of 
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shock position. The throat exit static pressure P56 is the signal that will be used to 
evaluate the performance of the control to  maintain a desired shock position while the in- 
let  is subjected to a downstream airflow disturbance. 

The control system using only P56 feedback is illustrated in figure 16 where the 
inner P loo? is open. The command signal, P56, is a voltage proportional to 
the desired throat exit static pressure.  The controller Kc56Gc56 w-oduces ! a com- 
mand voltage, Vb which is supplied to the bypass -door servos.  

turbance, wbd is 

92 

Without control the transfer function relating P56 to the downstream airflow dis- 

56 - = K  K G G 
wbd 

92 56 92 56 

With the single-loop P56 feedback control system, the response of P56 to the dis- 
turbance is 

'561 Kg 2K56G9 aG 56 
K K  K G  G G G h  WbdlC + K ~ 5 6  b 92 56 92 56 c.56 b 56 

The problem is to specify the controller Kc56Gc56 that minimizes the disturbance 
over the fre-  induced P 56 pressure  fluctuations and, hence, shock motion, P56/wbd I 

quency range of 0 to 140 hertz. 

form. The root locus is used to determine the factors of the characteristic equation 
The transfer functions of the individual elements of the system a r e  known in factored 

+Kc56 K K  b 92 K 56 G c56 G G  b 92 G 56 h 56 = (B8) 

In this case the controller transfer function Kc56Gc56 is of thl? general form 
(fig. 16) 

S 

The integration provides infinite loop gain at zero frequency, thereby reducing the steady- 
state position e r r o r  to zero for step disturbances. 

inlet and bypass doors of figure 28 are added a pole a t  the origin (the integrator) and a 
Figure 29 shows the root l o , x s  plot f o r  type 2 control. To the poles and zeros of the 
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zero at 250 radians per second (c = 250). These points are shown enclosed by a 
symbol in figure 29. A wide range of zero locations were investigated and the zero at 
250 radians per second yielded the best  performance. 

T h i  root locus plot indicates that the loci beginning at the integrator and inlet poles 
a t  0 and 46 radians per  second, respectively, terminate at the complex inlet zeros at 
190 radians per second and 65'. The locus beginning at the open-loop bypass-door pole 
at 650 radians per second terminates at the controller zero at 250 radians per  second. 
System stability is determined by the loci which originate at the inlet poles at 285 radians 
per  second and 81' and cross  the imaginary axes.  The r o d  locus indicates a maximum 
loop gain for stability to  be 340. 

Although the high-frequency loci determine stability gain, the low-frequency loci 
res t r ic t  the loop gain to less than 100 to  maintain a reasonable damping ratio on the 
closed-loop poles in that region. A loop gain of 79 was chosen f o r  the type 2 control. 

The type 2 control along with three other types of controllers (types 1, 3, and 6) 
were then used on the analog simulation. Closed-loop frequency responses of APs6/  
hwbd were obtained for  each of the controllers. Many controllers of each type were in- 
vestigated, but only the ones giving the best  results for each type are presented. Fig- 
ure  30 shows the responses for the open-loop, type 1 control, and type 2 control. Fig- 
ure  31 shows the responses for the open-loop, control type. 3 control, and type 6 control. 

To assess the low-frequency performance of the single-loop integral type of con- 
t rols ,  let us examine the low-frequency P 56 pressure  oscillations. The open-loop r e -  

0 

I sponse of P56 to the disturbance becomes 

- -  '56 
wbd 

Similarly, the closed-loop response becomes 

- K92G9$56G56 
K G K G h  C + KbGbKc56Gc56 92 92 56 56 56 

A convenient normalization for the closed-loop response is 

wbd I CN Kg 2K 56 
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The nor mal ized closed - loop response becomes 

wbd I CN K G K G h  
+ KbGbKc56Gc56 92 92 56 56 56 

For small  values of w ,  equation (B9) reduces to (B10) remembering that G56, Gg2, Gx, 
and Gb equal one at low frequencies and that Gc56 for the integral type of controls re- 
duces to l / w  for small  o: 

KL KL 1 +-  wbd I CN 
w 

where KL is the loop gain. 
The value of KL can be obtained from the closed-loop frequency response. This 

can be done by projecting the low-frequency portion of the amplitude response line (a 
straight line with a slope of +1) until it c rosses  the amplitude rat io  equals 1 .0  line. At 
this point w equals KL. 

Equation (B10) shows that at low frequencies, increasing KL decreases the ampli- 
tude of the disturbance induced P56 pressure oscillations and hence normal shock mo- 
tion. Although it would be desirable to have large values of loop gain, the control is 
limited by the instability generated by the loci crossing the imaginary axis. This discus- 
sion also applied to  the two-loop type 6 control, only it is a little more complicated to 
show that equation (B10) also applies for small  w .  

The loop gain for the type 1 control response shown in figure 30 w a s  0.96. The r e -  
sponse of the type 2 control in figure 30 used a loop gain of 79. A s  expected, at low fre- 
quencies the response for  this control shows a significant reduction of the disturbance 
induced P56 pressure  oscillations. Because the controller is in the feedback path, the 
integrating action of the controller produces a closed-loop amplitude characteristic like 
that of a differentiator. 

added to schieve good low-frequency control. Controllers with both distinct r ea l  zeros 
and complex quadratic zeros  were investigated. The real pole was included to equate the 
order  of the numerator and denominator, which gives finite high-frequency gain. This is 
necessary in a real system to avoid amplification of high-frequency noise. The best con- 
t rol ler  of this type was found to have the transfer function 

The controllers of the type 3 control were investigated next. Again the integrator was 
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S2 2(0.5)S + 

Kc56Gc56 = Kc56[2+ 285 - 1 
The dashed line of figure 31 is the analog computer response using the above con- 

t rol ler .  The loop gain was 91. 
The control systems discussed were limited in performance by the dead time be- 

tween the downstream airflow disturbance and the throat exit static pressure feedback 
signal P56. In an attempt to obtain better regulation against downstream airflow dis- 
turbances, a control was investigated in which a diffuser exit static pressure P g 2  was 
used in addition to P56 for feedback. The transfer function Kg2Gg2 which relates  Pg2 
to the downstream airflow disturbance is modeled without the dead time. The pressure  
feedback Pg2 was used to augment the primary throat exit pressure loop. The Pg2 
pressure has a rather low gain for use as the primary feedback signal. A simple pro- 
portional controller was chosen for the minor loop. Thus, Kcg2GCg2 is replaced by 
Kc92 in the block diagram of figure 16. The Pg2 pressure signal first went through a 
high-pass filter before going to the Pg2 proportional contr.oller. The high-pass fi l ter  
had the transfer function 1. S?S/(S/O. 6 + 1). Several compensated integral outer-loop 
controllers were investigated with the proportional inner loop. The best resul ts  were ob- 
tained with a controller having the transfer function: 

~ 

I 
S2 2(0.15)S + 

Kc56Gc56 = Kc56b+ 325 1 
s k +  1\ 

\316 / 

Kcg2 = 2.5 0313) i 
The long-dashed line of figure 31 is the analog computer response using the best  

type 6 control. The loop gain was 85. The long-dashed line response is below the short- 
dashed line response for frequencies above 4 hertz and demonstrates the advantage of 
using the Pg2 inner loop feedback. 
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APPENDIX C 

ANALYTICAL AND EXPERIMENTAL DATA FOR CONTROLS TESTED 

OTHER THAN THE BEST CONTROL 

The data in this appendix a r e  split up into three major groups. The first group is 
the data taken with the inlet terminated with the long pipe. The second and third groups 
are the data taken with the inlet terminated with the choked orifice plate and engine, r e -  
spectively. The closed-loop frequency response phase plots will not be included with 
most of the closed-loop data that a r e  presented in this appendix. 

In le t  Terminated with Long Pipe 

Single-loop and double -loop control systems were investigated on the long pipe con- 
figuration (type 1, 2, 3 ,  and 5 controls). 

Single-loop throat exit static pressure feedback (types 1, 2 ,  and 3 controls). - Fig- 
ure  16 shows that the single-loop control of shock position feeding back throat exit static 
pressure  P56 is represented by setting Kc92Gcg2 = 0. 

Type 1 controls: Figure 32 shows a comparison between the analytical frequency r e -  
sponse and the experimental response for type 1 control. The analytical curve was taken 
from figure 30 in appendix B. The analytical response had a slightly higher loop gain 
than the experimental response did. The analytical response also shows a slightly in- 
creased resonance. Except for the loop-gain difference, the responses compare favor- 
ably from 0 to 80 hertz.  There seems to be some discrepancy above 80 hertz; this is 
probably due to  the simplification introduced in the analytical model at the higher f re-  

quencies. 
Figure 33 shows the experimental frequency response of P56 to a downstream air- 

flow disturbance using type 1 control compared with that of the open-loop response (solid 
line). The curves show that the distrubance induced shock motion has been reduced below 
that of the open-loop from 0 to 45 hertz. The curves also show that the resonance at about 
55 hertz has been increased over that of the open-loop system. Adding closed-loop con- 
t rol  has improved system response at frequencies below the resonance frequency, but it 
has not improved the system response in the area of the resonance and, in fact ,  has made 
it worse in that region. Also, because proportional control was used, a steady-state error 
in P56 will exist for steady-state changes in Wbd. For type 1 control (fig. 33) a step 
disturbance in airflow will produce an offset in P56 and thus shock position having a 
value 0.6 of that of the open-loop system. This e r r o r  can be limited by using some 
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form of integral control for Gc56. All of the other controls discussed will be some form 
of integral control. 

The amplitude of P56 and thus shock motion induced by the disturbance airflow 
when the system is under closed-loop control can be determined by the methods of c lass-  
ical control theory. With the aid of figure 16 the disturbance airflow wbd can be con- 
sidered to be the input to a closed-loop servomechanism having K56G56K92G92 as its 
forward path transfer function and h56Kc56Gc56KbGb in the feedback path. The KxGx 
block is outside of the closed-loop and in ser ies  with its output. The transfer function of 
the closed-loop would then, in general, be given by G/(1 + Gh) where G and h,  repre-  
sent the forward path and feedback path transfer functions, respectively. Thus 

56 - 

- -  '561 - K56K9 2G56G9 2 

wbd 

wbd I C ' + K56K9 2h56Kc 56KbG56G9 aGc 5sGb 

3 -  - wbd C - - G56G92 

CN K56K92 + K56K9 2h56Kc 56KbG56G92Gc 56Gb 

The open-loop response of throat exit static pressure to the disturbance airflow 
would be given by 

wbc? 

- = K  56 K G G 
56 92 56 92 

wbd 

3 -  - 1 - 1 - 
CN + K56K92h56Kc56Kb + KL 

At low frequencies G~~ = Gg2 2 1, hence, 

for  small  w (C3) 
' 56 - = K  K 
wbd 

56 92 

This is a convenient normalizing parameter.  The closed-loop normalized transfer func- 
tion of P56 to wbd is 

and for small  values of w 



where KL is the loop gain. It is thus seen that the low-frequency disturbance induced 
shock motion can then be reduced by increasing the loop gain. However, increasing the 
loop gain also has the disadvantage of increasing the resonance at 5 5  hertz.  

only P56 was investigated. In this case 
Type 2 control: Next, single-loop proportional-plus-integral control feeding back 

'56 - 
wbd 

S - + 1  

for  small  w - 1 --M- 

KL KL CN 

Equation (C4) reduces to equation (C6) when G56 = Gg2 = Gb = 1 at low frequencies. 
Thus, 

w 

where KL is the loop gain. Therefore, in the low-frequency range the amplitude char- 
acterist ic increases in direct  proportion to  the frequency like that of a differentiator. 
This is due to  the fact that the integrator, whose output amplitude decreases with fre- 
quency, provides a progressively smaller  feedback signal as frequency is increased. 
This effectively approaches opening the feedback loop resulting in  no control. The r e -  
sulting closed-loop response is displayed in figure 34. The transfer function used for the 
controller was 

S 

The valu of loop gain can b determined by projecting the slope of th low-frequency por- 
tion of the amplitude characterisic (a straight line with a slope of +1) to  unity amplitude. 
From figure 34 it is seen that KL = 79. Significant reduction in P56 and thus shock mo- 
tion at the lower frequencies is noted with this type of control. At l hertz the disturbance 
induced P56 pressure oscillations and thus shock motion is approximately 8 percent of 
the corresponding open-loop value. The phase shift of the closed-loop system displays a 
90' leading characteristic at low frequencies, which is indicative of a differentiator. The 
disturbance induced P56 pressure oscillations and thus shock motion is less than that of 
the open-loop out to 8 hertz.  The resonance at 55 hertz has not been improved over that 
of the open-loop but the control has zero e r r o r  in the steady-state. 
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Figure 35 shows a comparison of the type 2 control experimental and analytical data. 
The solid line represents the analytical data. The analytical curve was taken from fig- 
ure 30 in appendix B. Analysis showed that the Kc56(S/250 + 1)/(S) controller gave the 
best  results for the type 2 control. It is the one used for both figures 34 and 35. Fig- 
ure  35 shows that the loop gain was the same for  both the analytical and experimental 
data. The experimental and analytical resonance frequency and magnitude agree well. 

Figure 36 shows experimental data using the type 2 control and varying the controller 
gain, which in turn var ies  the loop gain. As shown in figure 36 the increasing loop gain 
resul ts  in a greater  attenuation of low-frequency shock motion. However, at the same 
time the resonance amplitude at about 50 hertz is increased. The choice of the value of 
loop gain is then a trade-off between low- and high-frequency performance. 

controller transfer function was of the form 
Type 3 control: Next a compensated integral control (type 3) was tested. Here the 

Figure 37 shows a comparison of the experimental and analytical responses for  the 
type 3 control. The analytical curve was taken from figure 31 in appendix B. Figure 37 
shows that the loop gain was almost the same for both the analytical and experimental 
data. The resonant frequencies and magnitudes agree well. 

Figure 38 shows a comparison of the experimental open-loop response with that of 
the type 3 control. Again, because of the presence of an element with integral action in 
the feedback path, the closed-loop amplitude characterist ic increases in direct  propor- 
tion t o  the frequency. At 1 hertz the disturbance induced P56 pressure  oscillations and 
thus shock motion is reduced to  only 6 percent of its open-loop value. The amplitude of 
the P56 and thus shock motion is reduced below that of the open-loop response in the 
frequency range from 0 to  9 hertz.  The closed-loop system displays a slight amplifica- 
tion of shock motion at the resonant frequency as compared with its open-loop value. 

Two-loop control feeding back throat exit and diffuser exit static pressures  (type 5 
control). - Figure 16 shows the block diagram of the system feeding back both a throat 
exit static pressure  P56 and a diffuser exit static pressure  Pg2 using a filtered Pg2 
signal. The addition of the inner loop thus enabled the normal shock position control to  
react  faster to downstream airflow disturbances than is possible with only P56 feedback 
because the effective dead time between wbd and P56 is reduced by using Pg2, which 
has very little dead time between it and wbd. 
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Figure 26 demonstrates Pg2's anticipatory action to downstream airflow disturban- 
ces .  Figure 26 shows the experimental response of the type 4 control feeding back only 
an unfiltered Pg2 signal. In this case only the inner loop of the block diagram of fig- 
ure  16 is closed. The system was operated with three values of loop gain. Figure 26 
shows that, although the loop gain was varied by nearly five to one, the magnitude of the 
resonance at 65 hertz did not vary significantly. This decreased dead time resul ts  in 
less phase lag, which in turn makes the closed-loop system more stable as figure 26 
shows. 

type 5 control, while varying the proportional gain for  the P56 and filtered Pg2 feed- 
back loops. 

The broken curve had an open inner loop while the loop gain of the proportional-plus- 
integral controller in its outer loop was slightly higher than that for the other two curves. 
The dashed curve had a proportional gain of 0 .5  for  the inner loop. The solid curve had 
an inner loop proportional gain of 1. It can be seen that feeding back Pg2 improves the 
response of the system in the midfrequency range ( 3  to 55 Hz) in the cas? where a 
porportional-plus-integral controller is used in the outer loop. 

Figure 39 shows the experimental normalized amplitude response curves using the 

I n le t  Terminated w i t h  Choked Or i f ice Plate 

__ Type 5 control. - Figure 40 shows the experimental results for the best  type 5 con- 
t rol ler  used with the inlet terminated with choked orifice plate. The solid curve repre-  
sents  the experimental response with no inner loop Pg2 feedback (Kcg2GCg2 = 0). The 
dashed curve represents the case where proportional filtered P g  2 feedback (Kc92Gc92 
= 1.0) was used. The data show that feeding back Pg2 improves the performance of the 
control in the midfrequency range with the inlet terminated with the choked orifice plate. 
In this instance it a lso appears to have slightly increased the effective loop gain of the 
system by lowering the 1 hertz amplitude ratio.  

In figure 41 the normalized amplitude response of the type 5 control (fig. 40) is com- 
pared with that of the open-loop system. The amplitude of shock excursion deduced from 

pressure  for the closed-loop system is reduced over the frequency range from 0 to 
34 hertz (fig. 41) as compared with the open-loop system. At 1 hertz the disturbance in- 
duced P56 pressure oscillations and hence shock motion has been reduced to 8 percent 
of its open-loop value. 

Type 6 control. - Figure 42 shows the experimental normalized magnitude of the r e -  
sponse of the type 6 control showing the effects of the inner- andouter-loop gain varia- 
tion. The solid curve had a higher value of outer-loop gain (P56 feedback) and a lower 
value of inner-loop gain (filtered P feedback) than those values for  the dashed curve. 
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The figure shows that the performance at lower frequencies (7 Hz and below) is improved 
by the higher value of outer-loop gain and that performance at the midfrequencies (7 to  
40 Hz) is improved by higher inner-loop gain. Improved response to 40 hertz,  is ob- 
tained by increasing the gains; but, as the gains a r e  increased, the magnitude of the 
resonance at 55 hertz is also increased. Therefore, a compromise has to  be reached in 
which good response below 40 hertz is traded off against an increase in the resonance at 
55 hertz.  

Inlet Terminated with Engine 

Type 5 control. - Figure 43 shows the closed-loop experimental response of P56 
where a proportional-plus-integral control is used for the outer loop and the inlet is 
terminated by the 585-13 engine operating at 80.6 percent corrected speed. In the case 
represented by the solid curve, no inner loop feedback of the filtered Pg2 signal was 
used. The inner loop was closed using Kc92Gc92 = 3.0 in the case represented by the 
dashed curve. It is noted that closing the inner loop reduces shock position excursion as 
represented by P56 in the frequency range from 1 t o  50 hertz. 

Figure 44 shows a comparison of the experimental response of the open-loop system 
to that of the type 5 control. The disturbance induced shock motion as indicated by P56 
is reduced to  7 percent of its open-loop value at 1 hertz.  The response of the closed- 
loop system is improved from its open-loop value over the frequency range from 0 to  35 
hertz while the magnitude of the resonance at 55 hertz has been increased. 

Type 6 control. - In figure 45 the effect of changing outer-loop and inner-loop gains 
is presented for the type 6 control with the inlet terminated with the 585-13 turbojet 
engine. In the case of the dashed curve no inner-loop feedback (filtered Pg2) was used. 
In the cases  of the solid and broken curves the same value of inner-loop gain was used, 
but the outer-loop gain was greater  in the case of the solid curve. It is noted that the 
low-frequency attenuation of shock motion as indicated by P56 is increased by use of a 
higher outer-loop gain. 
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figure 3. - Moael installed i n  IO- by Iu-foot Supersonic Wind Tunnel test section. 
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Figure 4. - Block diagram of inlet. 

38 



6ap ‘al6ue aseqd 

39 



CO -9063-01 

Long pipe 
Choked o r i f i ce  plate 2 = G 

---- Engine } "bdlN 92 

0 z I I I 1 1 1 1 1 1  I I I I I I I I I  I 

Frequency, Hz 

P92 to downstream air f low disturbances fo r  di f ferent i n le t  t e r -  
m ina t i ons  (data f rom ref. 8). 

F igu re  7. - Frequency responses of d i f fuser exi t  static pressure 

T,Throat exit static tap (P56) Di f fuser exit 
Throat static taps-, \ 
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Figure 8. -Locat ion of pressure instrumentat ion.  

40 

1 



Throat static pressure taps 

Throat exit (D) 40.97 - 

Section A-A 

I T e W  

CD -10559-01 

Figure 9. - Inlet throat pressure instrumentation locations. (Dimensions in centimeters from cowl-lip.) 

Frequency, Hz 

(b)  Phase angle. 

Figure 10. - Frequency response plots of feedback pressure transducers and connect- 
ing tubing. 
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Fiqure 11. - Overboard bypass door assembly and actuator. 
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Figure 12. - Bypassdoor servosystem installation. 
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Figure 13. - Normalized bypass-door position to  command voltage 
frequency response. 
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Figure 14. - Schematic representation of i n le t  controls experimant in 10- by 10-foot 
Supersonic Wind Tunnel. 
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Figure 23. - Experimental A P 5 6 / A W b d l c ~  frequency responses 
showing effect of va ry ing  operating point and disturbance 
amplitude o n  frequency response for type 6 control. I n le t  
terminated w i th  choked or i f ice plate; downstream air f low dis-  
turbance. Control ler  t rans fe r  f unc t i on  aain. K-",,. 2.75. 
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Figure 26. - Experimental AP92/AWbdlc,, frequency response 
showing effect of va ry ing  con t ro l l e r  gain for type 4 control. I n le t  
terminated w i th  long pipe; downstream air f low disturbance. 
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Figure 27. - Experimental AP+vibd(~r\i f requency responses 
showing effect of varyinq inner- loop gairi Kcqp for type 6 
control. I n le t  t rminatad with the  long pipe; dobvnstrzam 
air f low disturbance. 
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Figure 29. - Root locus for type 2 control 
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Figure 30. - Analytical ~P561AWbd frequency responses using analog 
computer inlet simulation to obtain open-loop response and response 
using type 1 and 2 controls. 
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Figure 31. -Analytical AP5g/AVdbd frfquencv responses using analog com- 
puter inlet simulation to o tain open loop response and responses using 
type 3 and 6 controls. 
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Figure 32. - Comparison of AP56/AWbdlcN experimental and 
analytical frequency responses of inlet using type 1 control. 
Inlet terminated with long pipe; downstream airflow 
disturbance. 
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Figure 33. - Comparison of experimental AP%/AWbf open-loop 
frequency response with frequency response of in et using 
type 1 control. Inlet terminated with long pipe; downstream 
airflow disturbance. 
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Figure 36. - Experimental AP56/Awbdl,--~ frequency responses of 
inlet showing effect of varying controller gain using typ.: 2 con- 
trol. Inlet terminated with long pip?; downstream airflow dis- 
turbance. 
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Figure 37. - Comparison of A P ~ 6 h W b d l c ~  ,experimental and 
analytical frequency responses of inlet using type 3 control. 
Inlet terminated with long pipe; downstream airflow disturbance. 
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Figure 38. - Comparison of experimental !+6/AW open-loop 

frequency response with frequency response of i#et using 
type 3 control. Inlet terminated with long pipe; downstream 
airflow disturbance. 
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Figure 39. - Experimental A P 5 6 / A W ~ l c ~  frequency responses 
of inlet showing effect of varying inner- and outer-loop con- 
troller gains using type 5 control. Inlet terminated with long 
pipe; downstream airflow disturbance. 
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Figure 40. - Experimental AP56/AWbdJc, frequency responses 
of inlet showing effect of varying inner- and OUtX-lOOp 
controller gains using type 5 control. Inlet terminated 
with choked orifice plate; downstream airflow disturbance. 
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figure 41. -Comparison of experimental AP56/AVJbd open-loop 
frequency response with frequency response of inlet using type 5 
control. Inlet terminated with choked orifice plate; downstream 
airflow disturbance. 
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igure 42. - Experimental AP56/,AWbdl~N frequency responses of 
inlet showing effect of varying inner- and outsr-loop controller 
gains using type 6 control. lnlst terminated with choked orifice 
plate; downstream airflow disturbance. 
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Figure 43. - Experimental AP56/AWMl~N frequency responses of 
inlet shaving effect of varying inner-loop controller gain using 
type 5 control. Inlet terminated with engine; downstream air- 
flow disturbance. 
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Figure 44. - Comparison of experimental AP56/Awbd open-loop 
frequency response with frequency response of inlet using 
type 5 control. Inlet terminated with engine; downstream air- 
flow disturbance. 
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Figure 45. - Experimental AP56/AWbclcN frsquency r-sponses of 
inlst showing Zffect of varying inner- ano outar-loop controller 
gains using type 6 control. Inlet terminat:d with engine; down- 
stream airflow disturbance. 
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